225+x^2=(2x)^2

Simple and best practice solution for 225+x^2=(2x)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 225+x^2=(2x)^2 equation:



225+x^2=(2x)^2
We move all terms to the left:
225+x^2-((2x)^2)=0
determiningTheFunctionDomain x^2-2x^2+225=0
We add all the numbers together, and all the variables
-1x^2+225=0
a = -1; b = 0; c = +225;
Δ = b2-4ac
Δ = 02-4·(-1)·225
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{900}=30$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*-1}=\frac{-30}{-2} =+15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*-1}=\frac{30}{-2} =-15 $

See similar equations:

| 8m-12=32 | | T2-11t+24=0 | | 5(1-7a)+4a=-119 | | 1/3x+3=4x | | 2+z-1=7+7 | | B-18=2b | | 8-(-8t+2)=t+5 | | 4-x-2=30+8 | | 55+(3x+2)+(13x-3)=180 | | -2(m-8)+4m=6m | | 225+x^2=2x^2 | | 6x-18=6x+10 | | 4-x-8=30-6 | | T=2771+165x | | 3/2q=9/2q-18 | | 3x+25=3x+12 | | 4(x-1)/8=2(x+3)/8 | | 6n+7-10n=3n+2-6n | | -2.4a+3.7=-16.1+31a | | 6s−4=16+2s | | 7(-3)+10x=-11 | | 2x+45+45=180 | | 7(2x+1)=5(3x+2) | | 40-1=2-v+3 | | 5x(-)2=-18 | | 2(0.5z+7)=z(z-5) | | −4+3x=2x+3(x+1) | | 12h+2=8+h | | 4x-9(-2)-2=0 | | 2323(6-3x)=(1-x)+(3-x) | | 9x/7-x=2 | | 6(x+2)=14 |

Equations solver categories